Poset Ramsey Number $$R(P,Q_{n})$$. I. Complete Multipartite Posets

نویسندگان

چکیده

Abstract A poset $$(P^{\prime },\le _{P^{\prime }})$$ ( P ′ , ≤ ) contains a copy of some other $$(P,\le _{P})$$ if there is an injection $$f:P'\rightarrow P$$ f : → where for every $$X,Y\in X Y ∈ , $$X\le _{P} Y$$ and only $$f(X)\le _{P'} f(Y)$$ . For any posets P Q the Ramsey number R ( ) smallest integer N such that blue/red coloring Boolean lattice dimension either with all elements blue or red. complete $$\ell $$ ℓ -partite $$K_{t_{1},\dots ,t_{\ell }}$$ K t 1 ⋯ on $$\sum _{i=1}^{\ell } t_{i}$$ ∑ i = elements, which are partitioned into pairwise disjoint sets $$A^{i}$$ A $$|A^{i}|=t_{i}$$ | $$1\le i\le \ell two $$X\in A^{i}$$ $$Y\in A^{j}$$ j $$X<Y$$ < $$i<j$$ In this paper we show $$R(K_{t_{1},\dots }},Q_{n})\le n+\frac{(2+o_{n}(1))\ell n}{\log n}$$ R Q n + 2 o log

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A multipartite Ramsey number for odd cycles

In this paper we study multipartite Ramsey numbers for odd cycles. Our main result is the proof of a conjecture of Gyárfás, Sárközy and Schelp [12]. Precisely, let n ≥ 5 be an arbitrary positive odd integer; then in any two-coloring of the edges of the complete 5-partite graph K(n−1)/2,(n−1)/2,(n−1)/2,(n−1)/2,1 there is a monochromatic cycle of length n. keywords: cycles, Ramsey number, Regular...

متن کامل

On multipartite posets

Let m ≥ 2 be an integer. We say that a poset P = (X, ) is m-partite if X has a partition X = X1 ∪ · · · ∪Xm such that (1) each Xi forms an antichain in P, and (2) x ≺ y implies x ∈ Xi and y ∈ Xj where i, j ∈ {1, . . . , m} and i < j. If P is m-partite for some m ≥ 2, then we say it is multipartite. – In this article we discuss the order dimension of multipartite posets in general and derive tig...

متن کامل

Ramsey numbers in complete balanced multipartite graphs. Part I: Set numbers

The notion of a graph theoretic Ramsey number is generalised by assuming that both the original graph whose edges are arbitrarily bi–coloured and the sought after monochromatic subgraphs are complete, balanced, multipartite graphs, instead of complete graphs as in the classical definition. We previously confined our attention to diagonal multipartite Ramsey numbers. In this paper the definition...

متن کامل

Multipartite Ramsey Numbers

For a graph G, a partiteness k ≥ 2 and a number of colours c, we define the multipartite Ramsey number r k (G) as the minimum value m such that, given any colouring using c colours of the edges of the complete balanced k-partite graph with m vertices in each partite set, there must exist a monochromatic copy of G. We show that the question of the existence of r k (G) is tied up with what monoch...

متن کامل

Poset Limits and Exchangeable Random Posets

We develop a theory of limits of finite posets in close analogy to the recent theory of graph limits. In particular, we study representations of the limits by functions of two variables on a probability space, and connections to exchangeable random infinite posets.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Order

سال: 2023

ISSN: ['1572-9273', '0167-8094']

DOI: https://doi.org/10.1007/s11083-023-09636-8